您当前的位置: 首页 > 资源详情

电子系马骋团队合作开发新型跨模态脑成像技术

来源机构: 清华大学    发布时间:2024-5-22点击量:2

全脑跨模态分析已经成为理解大脑运转机制和神经系统疾病发病机理的前沿研究手段。近年来,荧光显微光学断层成像(fMOST)与光片荧光显微镜(LSFM)结合各种组织透明化技术,已经成为广泛使用的全脑三维荧光成像技术,尤其在神经环路研究中。然而,这些技术在大尺寸样本成像、高通量全脑三维成像以及整合多组学分析等应用场景下存在一定的局限性。

为解决上述问题,清华大学电子工程系、北京智源人工智能研究院与清华大学生命学院IDG麦戈文脑研究院合作设计搭建了一种全新的基于光声断层成像技术的全脑三维成像平台(PATTERN),能够实现大视野、快速及高灵敏度的全脑荧光成像,且能完好保持成像样本的原始物化特征和生物活性。该设计以PATTERN作为高兼容技术桥梁,研究者实现了对单一个体的跨模态全脑三维分析,包括与功能核磁共振成像(fMRI)、高精度全脑荧光成像以及空间转录组相结合,实现了个性化的全脑跨模态数据整合与联合分析,为其他脑分析技术提供了一种兼容性极强的三维荧光分析策略。

该研究提出一系列创新,包括:利用光声信号漂白的时域特征进行高灵敏度荧光蛋白识别;采用多视角融合的成像策略获得三维各向同性分辨率;利用神经网络去除伪影提升信号的可靠性。PATTERN提供了一种新的光学方法来可视化全脑的荧光表达模式与神经投射结构,具有样品制备与成像过程无损、成像速度快、成像视野大的特点。

利用PATTERN技术,研究人员实现了对小鼠、大鼠、雪貂和狨猴等多种动物的脑样本进行三维全脑成像与脑区结构的定量形态分析。进一步地,利用PATTERN成像视野大的优势,研究者可以对完整的小鼠中枢神经系统进行直接成像,在取出样品的30分钟内即可完成成像的全过程,获得全神经系统的结构信息与荧光信号分布。如图1所示,研究者展示了不同颜色荧光蛋白在大脑中的分布,清晰观测到从运动皮层向脊髓的对向投射的结构特征,并通过对样本进行切片,在常规光学显微镜下验证了结果的正确性。

对单一个体的个性化多模态联合分析对各模态之间的兼容性以及最小化样品的损伤提出很高要求。PATTERN成像能够完整保留样品的生物生理特征,在获得三维光声图像之后,样品可以按照常规流程进行后续的生理生化分析。研究者展示了利用PATTERN成像结合空间转录分析的案例:利用外源表达AVV病毒载体,对小鼠海马体局部神经元敲低了对长期记忆形成非常重要的早期即刻基因c-fos的表达,进而联合PATTERN提供的三维荧光信息,和空间转录组分析获得的不同海马体亚区的基因表达特征,可以更轻松地对操纵区域与未操纵区域在学习前后的基因表达水平进行可视化。这一方面验证了与相关研究的高度一致性,另一方面还可以分析三维空间距离对不同亚区记忆相关基因表达的影响。通过结合不同生物分子的荧光指示物,可以利用PATTERN在三维空间中探究特定分子和不同位置神经元基因表达模式的关系,为多尺度、个性化理解大脑的功能与疾病提供全新的视角。

提供服务:导出本资源

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190