您当前的位置: 首页 > 资源详情

中国科大实现微孔框架离子膜内近似无摩擦的离子传导

来源机构: 中国科学技术大学    发布时间:2023-4-26点击量:2

研究团队经过长期研究积累和大量实验探索,设计了一类新型的“微孔框架聚合物离子膜”,提出了刚性微孔通道内“离子配位”机制(图1d),实现膜内近似无摩擦的离子传导和水系有机液流电池的快充。关键创新成果包括:

1.利用有机溶胶凝胶反应,一锅法制备了系列含疏水框架和亲水功能侧链的自支撑微孔框架离子膜(图1e,1f),实现了膜吸水后保持疏水框架主体结构尺寸稳定,避免了离子膜吸水对微观上离子通道尺寸和膜宏观机械强度的不利影响,为离子传递提供了刚性微孔限域环境。结果表明,该膜具备优异的抗老化和耐溶胀性能(图2a-2d),膜的吸水溶胀率仅有3.1%(图2d),在较低的吸水率下能实现高效离子传递(图2e)。

2.提出刚性微孔通道内“离子配位”机制。该研究团队在微孔框架离子膜中引入荷电基团和多种可以和离子发生弱相互作用的功能基团,利用静电作用、离子-偶极作用等相互协同,降低离子在膜内传递能垒(图3a)。固体核磁共振和PFG-NMR测试(图3b-3f)表明:Na+在膜内的自扩散系数达到1.18×10-5cm2/s,接近水溶液中Na+扩散系数(1.28×10-5cm2/s)和无限稀释Na+扩散系数(1.33×10-5cm2/s)。

3.以微孔框架离子膜为隔膜组装的水系有机液流电池(蒽醌/铁氰化钾体系,图4a),膜面电阻仅为0.17 Ω·cm2(图4b)。该电池具备优异的倍率性能(图4c),其充放电电流密度可高达500 mA cm-2(当前文献报道均普遍≤100 mA cm-2),且在高电流密度下循环充放电中保持稳定(图4d)。该膜实现了水系有机液流电池快充,在不同电流密度下的电池的能量效率和容量利用率均显著高于文献报道值(图4e,4f)。研究者也拓展了该研究成果,实现了中性体系液流电池的快充。

论文匿名评审人评价:“这种阳离子膜在液流电池中展示出了非凡的性能,其对基于分子型活性物质的水系液流电池研究体系,具有重要的借鉴意义。毫无疑问,与迄今为止使用的最好的膜相比,此类阳离子膜的性能显著提高。”“让人惊叹的是,在这种具备刚性限域离子通道的膜内,钠离子的扩散系数接近在水中的状态。”

《Science》记者Bob Service致信要求采访也谈及:“我们写过很多关于电池、电解槽和其他需要离子传输膜的设备的故事。您们的新工作看起来可能会影响其中的许多研究领域,并可能影响许多技术。因此,我有兴趣写一篇关于这篇研究工作的新闻报道。”

中国科学技术大学化学与材料科学学院博士后左培培、英国爱丁堡大学叶纯纯和中国科大本科毕业生焦中任为论文的共同第一作者。该研究工作获得了国家重点研发项目、国家自然科学基金和中国博士后科学基金等项目资助。

论文链接:https://www.nature.com/articles/s41586-023-05888-x

science评论报道:https://www.science.org/content/article/new-molecular-membranes-could-slash-costs-storing-green-energy

提供服务:导出本资源

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190