您当前的位置: 首页 > 资源详情

In 10 years, CRISPR transformed medicine. Can it now help us deal with climate change?

来源机构: 加州大学伯克利分校    发布时间:2022-6-28点击量:2

Coming from a long line of Iowa farmers, David Savage always thought he would do research to improve crops. That dream died in college, when it became clear that any genetic tweak to a crop would take at least a year to test; for some perennials and trees, it could take five to 10 years. Faced with such slow progress, he chose to study the proteins in photosynthetic bacteria instead.

But the advent of CRISPR changed all that. Savage is now pivoting to molecular crop breeding, hoping to find ways to improve their carbon uptake and the amount of carbon they return to the soil. And he hopes to see these improved crops in fields within his lifetime, helping to boost crop yields but also to draw down the excess carbon in the atmosphere that is warming the planet and stash it underground.

“The advent of CRISPR basically allowed us to create new molecular tools for potentially skipping the slow aspects of plant tissue culture and plant genetic engineering, which are large barriers to doing experiments in plants,” said Savage, associate professor of molecular and cell biology at the University of California, Berkeley, an investigator in the Howard Hughes Medical Institute, and member of the Innovative Genomics Institute (IGI), which focuses on the myriad uses of CRISPR-Cas9 genome editing.

One of his collaborators, Krishna Niyogi, UC Berkeley professor of plant and microbial biology, estimates that the suboptimal photosynthetic reactions in plants could be improved with CRISPR editing to be between 20% and 50% more efficient. That means more carbon captured from the air, complementing other efforts — in particular, halting the burning of fossil fuels — to reduce greenhouse gases. Agriculture could potentially sequester billions of tons of carbon each year.

“Now, I’m really excited to create tools to eliminate the slow bottleneck,” Savage said. “Then we can start to do more molecular experiments again, like trying to improve photosynthesis in a way that you could never do before. CRISPR enabled that.”

A $11 million commitment from the Chan Zuckerberg Initiative (CZI) announced this month will help Savage and IGI researchers at UC Berkeley, UC Davis and Lawrence Livermore National Laboratory (LLNL) rapidly assess CRISPR gene editing in plants, primarily rice and sorghum, and hopefully get improved varieties into field trials in three to five years.

“In crop breeding, a typical graduate student for their Ph.D. project might make mutations in 10 or 20 plants — they get 10 or 20 shots on goal. We know that’s not enough,” Savage said. “The power of CRISPR is, we now have the ability to essentially make all possible mutations, determine in the lab what the most promising mutations might be, then take that prioritized list and move it into the field and assess from there what would work. So, we still take 10 shots on goal, but they’re 10 really good shots on goal.”

提供服务:导出本资源

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190